fictitious values of the critical temperature found for the others agree with those that are calculated from the capillary rise.

III. The values of t_c both true and fictitious, found by aid of the modified Walden method, applied to drop weight, without the use of the molecular weight, agree as closely as could be expected, remembering the possibilities of error inherent in the method.

IV. It is shown that the calculated t_c for a mixture of benzene and carbon tetrachloride, I : I by weight, is practically the mean of the values found for these two liquids alone.

LABORATORY OF PHYSICAL CHEMISTRY.

[CONTRIBUTIONS FROM THE HAVEMEYER LABORATORIES OF COLUMBIA UNIVERSITY, No. 188.]

THE WEIGHT OF A FALLING DROP AND THE LAWS OF TATE. VI. THE DROP WEIGHTS OF TWENTY NEW NON-ASSOCIATED LIQUIDS, AND THE MOLECULAR WEIGHTS CALCULATED FOR THEM.

By J. LIVINGSTON R. MORGAN AND G. K. DAGHLIAN. Received March 27, 1911.

The object of this paper is to present the results of a further testing of the Morgan drop weight apparatus, similar to that carried out by Morgan and Thomssen, for the purpose of testing the new definition of normal molecular weight, and comparing the results with those found from the capillary rise, wherever that is possible; studying those liquids which lead to a calculated value of t_c in $w(M/d)^{2/a} = k (t_c - t - 6)$, which agrees with the observed critical temperature, as well as those which do not.

The tip used in this research was one with a sharp, straight edge, having a diameter of about 5.7 mm., with a bore of 0.2 mm. It was at once recognized here that it would be impossible on this tip to use any liquid of such a great density and small surface tension as carbon tetrachloride, as it would produce a drop too small in volume to be controlled, so that liquid was not studied. All the other liquids gave drops of such a volume that their speed of formation at the moment of fall could be perfectly controlled.

The experimental results for the standardization of this tip, using benzene, aniline, pyridine, and quinoline, are given in Table I to IV inclusive:

	TABLE I.—BENZENE.						
t.	Wt.vessel + 15 drops.	Av.	Wt. vessel + 5 drops.	A ▼.	A ▼ . <i>t</i> ,	Wt. 1 drop. Mg.	
36.05 36.05 36.35	10.0871 10.0868 10.0868	10.0869	10.7954 10.7956	10.7955	36.15	29.14	
59.58 59.53 5 9.53	10.0472 10.0474 1 0 .0467	10.0471	10.7883 10.7883	10.7883	59.54	25.88	

TABLE II.—ANILINE.						
t.	Wt. vessel $+$ 15 drops.	Av.	Wt vessel + 5 drops.	Av.	Av t.	Wt. 1 drop. Mg.
34.3	10.0954					
34.2	10.0960	10.0956	10 6440	(empty vessel	34.3	45.16
34.35	10.0960	10.0950	10.0440	and vapor)	34.3	45.10
34.3	10.0950			and vapor)		
		TABLE	III.—Pyr	IDINE.		
23.03	11.2548					
22.75	11.2550		10.8484	10.8483		40.66
23.13	11.2544	11.2549	10.8482	10.8483	22.93	40.00
22.83	11.2553					
v	essel + 25 drops					
58.33	10.6389		10 0246			
58.43	10.6384	10.6386	10.9346	10.9343	58.4	35.215
58.40	10.6385		10.9340			
		TABLE	IV.—Quin	OLINE.		
22.38	10.4846			(
22.28	10.4846	10.4846	9.7525	(empty)	22.33	48.807

These results were obtained a year ago, and consequently, as were those given in the previous paper, are not as accurate as those which can be obtained now. The k values for these liquids from the above results, using the t_c values actually calculated by Morgan and Higgins from the ratio $k_{temp.} = \Delta [w(M/d)^{2i_3}]/\Delta t$, are given in Table V, and will serve to show that the values of k necessary are practically constant. The densities used here are calculated from the formulas already given by Morgan and Thomssen.

TABLE V.—VALUES OF $w(M/d)^{2_{j_3}}$ and of k.

						k necessary to give t	_c of M & H,
Liquid.	Μ.	t.	<i>d</i> .	w.	$w(\mathbf{M}/d)^2/_3.$	~	
Benzene	78	36.15°	0.8617	29.14	587.47	2.3857) 2.3874) ² .3866	288.4°
		59.54	0.8368	25.88	532.06	2.3874	
Aniline	93	34 · 3 °	1.0093	45.16	921.20		425.8
Pyridine	79	22.93	0.9785	40.66	759.31	2.3872	247 0
		58.39	0.9430	35.215	674.23	6.3858	347.0
Quinoline	129	22.33	1.09195	48.807	1175.17	2.3882	520.4
						2.3874	

Naturally, to transform any result on this tip into one, at the same temperature, on any other tip, we have only to use the proportion

w_{M & D}: w_x :: 2.3866 : k_x,

where k_x is the benzene value of k of the other, calculated from $w(M/d)^{2/3} = k$ (288.5 — t — 6); and to obtain the surface tension in dynes per centimeter, at the same temperature, we have only to use the relation

$$w_{\mathbf{M} \& \mathbf{D}} : \boldsymbol{\gamma} :: 2.3866 : k_{\gamma}$$

where k_r is the k value found for benzene as above by the observer whose

results are to be compared; or is the average value found by all observers who have worked with benzene. While, since the volume of a drop is proportional to the capillary constant, we can calculate the capillary constant a^2 by first finding at the same temperature for benzene the ratio $a^2/w/d$, and then by multiplying any drop volume (*i. e.*, drop weight divided by density) by it, get the capillary constant at that temperature, of the liquid.

Further, it is to be remembered here that surface tensions as calculated from capillary rise can be compared indirectly with the drop weight at another temperature by finding with the proper $k_{\rm B}$ the value of the calculated t_c for each. An agreement in the values of t_c here indicates, since the M is the same, and d is the same function of the temperature, in each case, that K : $k :: w : \gamma$.

New Liquids.

The experimental results of the 20 new non-associated liquids studied are given in Tables VI to XXV. These results are not as accurate as those which can be obtained, for in many cases only 15 drops were weighed in place of the usual 30, which, with the 5-drop blank, causes an error of 0.1 mg. to become 0.01 in the weight of the single drop. Further, the variation in temperature involves a small error, for it is impossible, when the temperature is changing, to find how much the change in the liquid lags behind that in the thermometer. Notwithstanding these disadvantages, which have been excluded in the papers which are to follow this, it will be observed that the results are very satisfactory. Just as in the last paper, it is to be remembered here also that the results given in the tables throughout are not the only ones which were found, but are representative of a number of results, and are given because the number of drops taken was the same and the temperatures practically identical. In those cases where but one result at each temperature is presented, others were always at hand at a slightly different temperature which checked the value of t_c resulting within less than one-tenth of one per cent.

TABLE VI.-BROMOBENZENE.

t.	Wt. vessel + 25 drops.	Av.	Wt. vessel. + 5 drops.	Av.	Av. t.	Wt. 1 drop. Mg.
37 · 9 38 · 4 38 · 55	11.5863 11.5870 11.5868	11.5867	10.8345 10.8352	10.83485	38.3	37 • 593
59.63 59.70	11.5210 11.5207	11.52085	10.8252 10.8247	10.82495	59.67	34.795
	+ 15 drops.	Тав	LE VII.—BR	OMINE.		
。 。 。	11.4380 11.4376 11.4385	10.43803	10.9141 10.9146	10.91435	٥°	52.368

WEIGHT OF A FALLING DROP AND THE LAWS OF TATE. VI. 675

	TABLE VIII.—CARBON DISULFIDE.							
t.	Wt. ves se l + 15 drops.	Av.	Wt. vessel + 5 drops.	Av.	Av. t.	Wt. 1 drop. Mg.		
20.15	11.1733		10.8190	2				
20.35	11.1718	11.17337	10.8190	10,8190	20.13	35.437		
19.90	11.1750							
		Таві	LE IX.—CY	MENE.				
18.95	11.0995		10.7963	<i>,</i>	a .			
18.75	11.1015	11.1009	10.7968	10.79677	18.7	30.413		
18.35	11.1018		10.7972					
59.45	11.0406	11.0407	10.7774		59.45	26.33		
59.45	11.0408							
		TABLE X	.—Dipheny	LMETHANE.				
59.05	11.2108							
59.0	11.2113	11.2110	10.6440 (empty and	59.0	37.80		
58.9	11.2109			vapor)				
		TABLE 2	XI.—Етнуц	BENZENE.				
20.9	11.1154	11.11545	10.8022		2 I	31.325		
21.1	11.1155	11.11545	10.0022		21	34-3-3		
59.4	11.0528	11 05225	10.7846		50 F	26.775		
59.6	11.0519	11.05235	10.7840	• • • •	59.5	20.775		
TABLE XII.—DIMETHYLANILINE.								
21.45	11.2381		10.8419	00-				
21.55	11.2379	11.2380	10.8418	10.84185	21.5	39.615		
59.50	11.1684							
59.65	11.1673	11.1682	10.8192		59.5	34.90		
59.45	11.1689							
		TABLE Y	XIII.—Етну	LANILINE.				
35.8	11.2152		10.8355					
35.8	11.2150	11.2152	10.8355	10.8354	35.8	37.98		
35.7	11.2154		10.8352					
58.7	11.1760	6-	10.8224		-0 -			
58.7	11.1760	11.1760	10.8226	10.8225	58.7	35.35		
		TABLE XIV	ETHYLE	VE CHLORIDE.				
34.2	11.1483							
34.2 34.1	11.1484	11.14843	10.8166	10.81665	34.1	33.178		
34.I	11.1486		10.8167	Ū	01			
01	+ 26 drops.		+ 6 dr o ps.					
60.0	11.4258	••	10.8404	· · · •	60.0	29.270		
		TABLE XV		ene Chloride	_			
	+ 15 drops.		+ 5 drops.					
34.1	10.0427							
34.I	10.0422	10.04265	10.7822	10.7822	34.I	26.043		
34.0	10.0430		10.7822					
	+ 25 drops.		+ 10 drops.					
56.9	10.2097	••	10.8683	• • • •	56.9	22.76		

GENERAL, PHYSICAL AND INORGANIC.

		TABL	E XVI.—Tor	JUENE.			
t.	Wt. vessel + 25 drops.	Av.	Wt. vessel + 10 drops,	Av.	Av. t.	Wt. 1 drop. Mg.	
36.05 36.05	11.0809 11.0808	11.08085	10.7916 10.7916	10.7916	36.05	28.925	
59.1 59.3	11.0425 11.0421	11.0423	10.7819 10.7812	10.78155	59.2	26.075	
	Тан	BLE XVII	-Phosphorus	TRICHLORID	E.		
25 6	+ 30 drops.						
35.6 35.6 35.6	11.5517 11.5515 11.5510	11.5514	10.9567 10.9569	10.9568	35.6	29.73	
00.00		TABLE	XVIII.—p-X	Cylene.			
	+ 25 drops.		+ 5 drops.				
37.9	11.3678	••	10.7921	••••	37 • 9	28.785	
59.2 59.2	11.3079 11.3083	10.3081	10.7820 10.7819	10.78195	. 59.2	26.308	
		Table	XIX.—9-X	YLENE.			
23.9	+ 15 drops. 10.2345						
23.8	10.2346	10.23455	9.9144	• • • •	23.85	32.015	
23.7	10.2358	••	9.9153	••••	23.7	32.05	
59·3	10.1756	10.1753	9.8965	· · · •	59.4	27.88	
5 9 · 5	10.17 5 0	TABLE	XXm-X	YLENE.			
24.9	10.2095		9.9057		24.9	30.38	
58.9	10.1529		9.8888	••••	58.9	26.41	
		TABLE X	ХІ.—Метну	LANILINE.			
a. 6	+ 25 drops.						
24.6 24.6	10.8230 10.8232	10.8231	9.9660 9.9658	9.9659	24.6	42.86	
59·7	11.2219		10.8378				
59.7	11.2217	11.2218	10.8382	10.8380	59.7	38.38	
		TABLE 2	XXII.—Mesi	ITYLENE.			
02 F	+ 15 drop s .		TO = 970				
23.5 23.5	10.0844 10.0844	10.0844	10.7812 10.7812	10.7812	23.5	30.32	
23.3 57.1	10.0452		10.7787				
57 · 4	10.0440	10.0446	10.7785	1 0.77 86	5 7 · 3	26.60	
	TABLE XXIII.—ISOBUTYL ACETATE.						
	+ 25 drops.						
24 23.6	10.5146 10.5158	10.5152	10.0082		23.8	25.35	
23.0 59.2	10.2991		9.8680		59.2	21.555	
59.2 59.3		nother vesse			59.2 59.3	21.535	
			XIV.—Iodo	BENZENE.			
23.5	11.9297		10.1876		23.5	43.55	
	+ 30 drop s .		+ 10 drops.				
59.6	10.9270	••	10.1441	••••	59.6	39.08	

		TABLE XY	ζV.—Fluor	OBENZENE.		
	+ 20 drops.	Ve	ssel and vapo	er.		
9.3	12,8962					
9.3	12.8965	12.89623	12.2747	· • • •	9.3	31.077
9.3	12.8960					
	+ 25 drops.					
34.5	12.9630		12.4122			
$34 \cdot 5$	12.9631	12.96317	12.4126	12.41243	34.5	27.537
34.5	12.9634		12.4125			

In Tables XXVI to XLV, inclusive, are given the values of the function $w(M/d)^{2/3}$ and the calculated t_c resulting from the equation $w(M/d)^{2/3} = k_B(t_c - t - 6)$, using the mean value of the k for benzene, viz., 2.3866. At the same time, wherever it is possible, the surface tension results, as found from capillary rise, together with the calculated value of t_c , from the proper value of k_B , are also given, in order that an indirect comparison may be made of the results of surface tension from drop weight and from capillary rise.

TABLE XXVI.—BROMOBENZENE; M = 156.96; $d_t = 1.5203-0.001282t$; t obs. = 397°. $w(\mathbf{M}/d)^{2/3}$. t. d. w. t_c . 845.60 398.61 38.3 1.4713 37.593 59.7 1.4438 34.795 792.57 397.8 TABLE XXVII.—BROMINE; $M_{Br_2} = 159.84$; t_c obs. = 302.2°. 52.368 3.1872 712.17 0 304.4 Ramsay and Aston, $k_{\rm B} = 2.1212$. t. $w(M/d)^{3/3}$. t_c . 10.6 552.08 276.9 46.0 487.98 282.1 78.1 426.09 285.0 TABLE XXVIII.—CARBON DISULFIDE; M = 76.14; $d_t = 1.29215-0.0013025t$; t_c obs. from 271.8°-279.6°. $w(M/d)^{2/8}$. d. ŧ. w. t_c . 20.13 1.2659 35.437 544.05 254.I Morgan and Thomsen, $t_c = 252.1$; Ramsay and Shields, $t_c = 270.2-271.7$; Ramsay and Aston, $t_c = 251.1$, 257, 257.4. TABLE XXIX.—CYMENE; M = 134.112; $d_t = 0.862-0.0008044$ (*t*-11.9°); t_c obs. = 378.6°. 18.7 0.8565 30.413 883.52 394.9 59.45 0.8235 26.330 785.20 394.5

¹ Miss C. M. Sillcox, working with a slightly smaller tip, and Miss J. Y. Cann with one larger as well as one smaller, have found since, at all temperatures, that $t_c = 397.0^{\circ}$.

Renard and Guye, $k_{\rm B} = 2.1108$.

t.	$w(\mathbf{M}/d)^{2/3}$.	<i>t</i> _c .	<i>t</i> .	$w(M/d)^{2/3}$.	<i>t</i> _c .
11.9	809.38	401.3	108.9	591.04	394.9
31.7	767.13	401.1	117.0	571.57	373.7
54.8	711.65	398.0	134.9	532.96	393 · 4
74.5	667.08	396.5	146.5	505.48	392.0
91.8	627.35	395.0	163.4	469.68	391.9
			172.8	451.50	392.7

Averag	ge, 39	95.5	5

l'able XX	XDime		NE; $M = 121.1$		-0.000825	(<i>t</i> -16.7)
			$c_c \text{ obs.} = 414.4$			
<i>t</i> .		<i>d</i> .	<i>w</i> .	$w(\mathbf{M}/d)^{2/3}$.		<i>t</i> _c .
21.5		95494	39.615	999.94		.46.5
59.53	0.	92360	34.900	900.74	4	42.9
		Dutoit ar	rd Friederich, k			
t.	$w(\mathbf{M}/d)^{2/3}$.	<i>t</i> _c .			$w(\mathbf{M}/d)^{2/3}$.	t_c .
22.7	891.5	453.0		76.7	762.5	445.6
43.5	838.6	448.6		99.0	708.3	442.1
		Renard	and Guye, $k_{\rm B}$	= 2.1108.		
10.9	909.75	447.9		126.7	644.16	437 • 9
41.0	845.41	447.5		134.8	626.26	437.5
55.0	811.76	445.6		154.0	582.87	436.2
78.9	753.38	441.8		165.0	560.61	436.6
96.0	714.26	440.4		175.5	535.28	435.1
108.8	684.25	438.9				
t.			THANE; $M = 168$ t_c obs. = 497 w_c			с.
59	0.9		37.80	1171.26		5.8
59	019		nd Friederich,	•	55	5,0
		Duton		-		_
108.3		••	• •	931.4	557	
210.2		••	••	677.1	538	s.4
Table	XXXII.—]	Ethylben	ZENE; $M = 100$ $t_c \text{ obs.} = 463.4$		8316-0.00	0833 <i>3t</i> ;
21.0	0.8	86566	31.325	772.83	35	o.8
59.5	0.8	83358	26.775	681.13	35	1.3
Table	XXXIII.—	-Ethylan:	LINE; $M = 12$ t_c obs. = 425		.9796-0.0	00831 <i>t</i> ;
35.8	0.0	9499	37.98	962.06	44	4.9
58.7		310	35.35	907.51		.5.0
		Dutoit an	d Friederich, k	B = 21.012.		
			•			
7.4				927.0		455.0
7 · 4 107 . 8		 		927.9 698.4		455.0 446.2

TABLE XXXIV.—ETHYLENE CHLORIDE: M = 98.95; $d_t = 1.28015-0.001528t$; t_c obs. = 283.3° to 289.3°. $w(M/d)^{2/3}$. t. đ. w. t_c . 618.79 34.1 1.22805 33.178 299.5 558.00 299.8 1.18850 29.270 60.0 TABLE XXXV.—ETHYLIDENE CHLORIDE; M = 98.95; $d_t = 1.207-0.0016t$; t_c obs. = 250, 254.5, 260.0. 1.1524 26.043 506.87 252.5 34.1 1.1160 22.760 452.56 252.5 56.9 TABLE XXXVI.—TOLUENE; M = 92.064; $d_t = 0.8682-0.000953$ (t-15.2); $t_c \text{ obs.} = 320.7^{\circ}$. 36.0 0.8484 28.925 658.57 318.0 0.8263 26.075 603.75 318.2 59.2 Ramsay and Aston, $k_{\rm B} = 2.1212$. $w(M/d)^{\frac{2}{3}}$ $w(\mathbf{M}/d)^{\frac{2}{3}}$. t. t. tr. t_c. 631.0 78.4 490.8 15.2 318.7 315.8 46.6 563.9 318.0 132.5 382.2 319.5 Renard and Guye, $k_{\rm B} = 2.1108$. 630.65 318.1 13.1 317.9 79.0 490.01 464.48 29.I 596.87 317.9 91.5 317.5 48.0 108.9 431.21 555.29 317.1 319.2 59.0 532.93 317.5TABLE XXXVII.—PHOSPHORUS TRICHLORIDE; M = 137.38; t_c obs. = 285.5°. d. w. $w(\mathbf{M}/d)^{2/3}$. t. t_c. 35.6 1.5649 29.73 587.24 287.7 Ramsay and Shields, $k_{\rm B} = 2.1012$ $w(M/d)^{2/3}$. t. d. w. tc. 16.4 562.3 288.0 290.0 46.2 499.8 TABLE XXXVIII.—p-XYLENE; M = 106.08; $d_t = 0.8801-0.0008468t$; t_c obs. 344.4°. 0.8480 28.785 720.0 345.6 37.9 59.2 0.8300 26.308 667.51 344.9 TABLE XXXIX.—0-XYLENE; M = 106.08; d = 0.8932-0.0008425t; t_c obs. 358.3°. 23.85 0.8731 32.015 785.36 358.9 0.8432 27.880 701.07 59.4 359.2 TABLE XL.—*m*-XYLENE; M = 106.08; $d_t = 0.8740-0.000944$ (*t*—10); t_c obs.=345.6°. 24.9 0.8599 30.38 752.86 346.4 58.9 0.8271 26.41 671.67 346.3 Dutoit and Friederich, $k_{\rm B} = 2.1012$. 15.7 714.2 361.6 74.9 583.4 358.5 136.7 445.8 354.8

Renard and Guye, $k_{\rm B} = 2.1108$.

	Re	enard and Guye,	$k_{\rm B} = 2.1108.$		
<i>t</i> .	$w(\mathbf{M}/d)^{2/3}, t_c$		t.	$w(M/d)^{2/3}$.	tc ·
10.0	707.95 351.	4	88.0	540.82	350.2
38.0	651.57 352.	7	99.4	516.76	350.2
49.8	624.47 351.	6	109.0	499.18	351.5
63.9	592.78 350.	7	128.3	458.93	351.7
76.8	564.88 350.	4	136.5	442.49	352.1
TABLE	XLI.—METHYLA	NILINE; $M = 107$ t_c obs. = 42		µ-0.000801 (<i>t</i> —10);
t.	d.	ж.	$w(M/d)^{2/2}$	8.	<i>t</i> _c .
24.6	0.9827	42,86	977.78	4	40.3
59.7	0.9546	38.38	892.68		39.7
	Duto	oit and Friederich	$k_{\rm B} = 2.1012.$		
9.9			886.5	43	37.8
108.5			690.2		43.0
210.8			477.7		14.I
					<i>.</i>
	LII.—MESITYLEN				= 367.7°.
23.5	-	30.32	812.61		370.0
57.3	0.8282	26.60	734.21	3	370.9
	Re	nard and Guye, I	$k_{\rm B} = 2.1108$.		
t.	$w(\mathbf{M}/d)^{\frac{2}{3}}.$	<i>t</i> _c .		$w(M/d)^{2/3}$.	<i>t</i> _c .
11.4	758.23	376.6	92.2	582.01	373.9
25.1	722.05	373.2	108.9	544.83	373.0
36.3	-	375.7	127.0	509.38	374.3
55.4	-	374.9	-	465.98	373.4
64.8	646.60	377.1		445.30	373.2
74.3	619.39	373.8	-		
TABLE XL	III.—Isobutyl	Acetate; $M = t_c$ obs. 288.3°,		802-0.00105	5 (<i>t</i> —10);
t.	d.	v_c ODS. 288.3, w.	$w(M/d)^{2/2}$	3.	
					tc.
23.8	0.8656 0.8282	25.35 21.55	664.23 581.54	•	9.0
59.2	0.8282	21.55	501.54	30	19.0
TABLE XLIV	Iodobenzene	; M = 203.96;	$d_t = 1.8606 - 0.06$	01535t; t _c 0	bs. = 448°.
t.	d.	w.	$u\left(\mathbf{M}/d ight)^{2/2}$	3.	t _c .
23.5	1.8245	43.55	1010.6:	² 45	3.0
59.6	1.7691	39.08	925.7		3.5
TABLE XLA	/.—Fluorobenze	$SNE: M = 06.04^{\circ}$	$d_{1} = 1.0466 - 0.00$	$01208t; t_{a}$ ob	$5 = 286.6^{\circ}$.
9.3	1.0354	31.077	636.80		2.1
34.5	1.0049	27.537	575.62	28	1.7

IABLE ALV	1.		
$w_i = w_o (I -$	$-\alpha't)$	$\frac{w_i}{d_i} = v_i =$	$= v_0 (\mathbf{I} - \alpha'' t).$
α'.	α″.	t_c .	t_c from k_B .
0.004078	0.003227	[288.5]	••
from benzen	e = 0.51974		
0.003472	0.002678	344.0	••
0.003073	0.002423	383.6	398.2
0.003103	0.002336	389.6	394.7
0.003496	0.002747	337 • 9	351.0
0.003934	0.003058	302.0	299.6
0.004654	0.003737	250.8	252.5
0.002729	0.002038	445.5	445.0
0.002935	0.002233	409.8	444.4
0.003670	0.002876	322.3	318.1
0.003504	0.002783	335.1	345.3
0.003332	0.002590	356.7	359. 0
0.003508	0.002613	347.1	346.4
0.002775	0.002112	433 - 5	440. 0
0.003345	0.002307	380.7	370.5
0.003842	0.002928	312.8	308.5
0.004338	0.003344	275.3	281.9
0.002665	0.001969	459.0	453.3
	$w_{i} = w_{0} (1 - \frac{\alpha'}{2}, 0.004078)$ from benzen 0.003472 0.003073 0.003103 0.003496 0.003934 0.004654 0.002729 0.002935 0.003504 0.003302 0.003504 0.003302 0.003508 0.002775 0.003345 0.003842 0.004338	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{ccccc} w_t &= w_0 & (\mathbf{I} - \alpha't) & & & \\ \hline w_t &= w_0 & (\mathbf{I} - \alpha't) & & \\ \hline a'. & \alpha''. & t_c. & \\ \hline 0.004078 & 0.003227 & [288.5] \\ \hline \text{from benzene} &= 0.51974 & \\ \hline 0.003472 & 0.002678 & 344.0 & \\ \hline 0.003103 & 0.002336 & 389.6 & \\ \hline 0.003496 & 0.002747 & 337.9 & \\ \hline 0.003934 & 0.003058 & 302.0 & \\ \hline 0.002729 & 0.002038 & 445.5 & \\ \hline 0.002729 & 0.002233 & 409.8 & \\ \hline 0.003504 & 0.002783 & 335.1 & \\ \hline 0.003504 & 0.002783 & 335.1 & \\ \hline 0.003508 & 0.002613 & 347.1 & \\ \hline 0.003345 & 0.00237 & 380.7 & \\ \hline 0.003842 & 0.00298 & 312.8 & \\ \hline 0.00338 & 0.003344 & 275.3 & \\ \hline \end{array} $

TABLE XLVI.

Discussion of Results.

The liquids studied above were of the greatest attainable purity. The bromobenzene and iodobenzene were especially prepared in this laboratory; the diphenylmethane was from Eimer and Amend, redistilled and recrystallized just before the determination was made; the isobutyl acetate, m-xylene, o-xylene, p-xylene, one sample of mesitylene, bromine and phosphorus trichloride were from Kahlbaum, usually redistilled just before using; while the others, including a sample of mesitylene, were especially prepared for this work by the Hoffman and Kropff Chemical Company,¹ and used directly. An idea of the purity of the latter preparations may be gained from the fact that the carbon disulfide possessed only the pleasant ethereal odor which characterizes the pure substance. The two samples of mesitylene, here, from the different sources, seemed to be perfectly interchangeable, no difference in drop weight being observable.

It will be noted that four liquids were studied at but one temperature, viz.: bromine, phosphorus trichloride, diphenylmethane, and carbon disulfide. In the case of carbon disulfide it was thought necessary to study only one temperature, to see if this undoubtedly pure sample would give a higher value of t_c than that found for another sample by Morgan and Thomssen, which might explain the considerably higher value of Ramsay and Shields, that could not be duplicated by Ramsay and Aston. As will be observed the value found, however, is only slightly larger than

¹ 619 Kent Ave., Brooklyn, N. Y.

that of Morgan and Thomssen, showing this smaller value to be correct. With phosphorus trichloride difficulty was experienced at 60° , a yellow substance forming in the ventilation tube, due perhaps to the failure of the drying tubes to exclude water vapor. As the result at the lower temperature agreed with the observed critical temperature, and with that obtained at another temperature from capillary rise, no further determinations were made. The low temperature result for bromine was considered sufficient, since it practically agreed with the observed critical temperature, and the Ramsay and Aston figures by aid of capillary rise, which disagreed with it, were stated by the authors to be probably inaccurate. At low temperatures the diphenylmethane gave trouble, owing to spontaneous crystallization. As the capillary rise value at another temperature agreed with the 60° result; here, also, it was thought unnecessary to make further determinations.

Since the value of t_c is equal to the observed critical temperature in the case of bromine; and in those of phosphorus trichloride and diphenylmethane practically the same t_c is to be found from capillary rise at a different temperature of observation, we can conclude that all the above liquids, with the exception of dimethylaniline, are normal in molecular weight, i. e., are non-associated; for all, with this exception, lead to the same calculated value of t_c (within a very small difference) at both temperatures of observation.

In the case of dimethylaniline, the same trend is shown by drop weight as that observed in the results from capillary rise; but it is quite likely that this discrepancy in t_c of 0.8 per cent. between 21.5° and 59.5° is due to the decomposition of this very unstable liquid, which darkens very rapidly on exposure to light. Here the low temperature result was obtained first, when the liquid was fresh—possibly a reversed procedure would have shown a trend in the opposit direction. Whatever the cause, however, we cannot say from the results that the molecular weight is normal, although it is quite evident that if it changes with the temperature, the change is not very great.

The agreement of the calculated t_c with the observed critical temperature is found to be very satisfactory for the following liquids: Bromine, bromobenzene, ethylidene chloride, toluene, phosphorus trichloride, p-xylene, oxylene, and m-xylene, while for mesitylene, ethylbenzene and iodobenzene the discrepancies are below I per cent. for the former, and but slightly above that for the two latter. For all the other liquids the calculated t_c , i. e., the fictitious critical temperature, viz.: the point 6° below which, by the formula $w(M/d)^{2i_3} = k_B (t_c - t - 6), w(M/d)^{2i_3}$ would become zero, is larger than the observed critical value for cymene, dimethylaniline, ethylene chloride, methylaniline, ethylaniline, isobutyl acetate, and diphenylmethane, while it is smaller only for carbon disulfide and fluorobenzene.

It is possible to compare with these values of the calculated t_c the corresponding values found from capillary rise, and consequently to find indirect proof of the relationship, at the same temperature, $w: \gamma:: K_{\rm B}: k_{\rm B}$, for the following liquids only: carbon disulfide, cymene, dimethylaniline, diphenylmethane, ethylaniline, toluene, phosphorus trichloride, m-xylene, methylaniline and mesitylene. In the cases of toluene and phosphorus trichloride the agreement is practically perfect between the t_c values from drop weight and from capillary rise. With diphenylmethane, ethylaniline and cymene and methylaniline, a value of t_c at some temperature is always found which is equal to the one, constant, figure found at both temperatures from drop weight. In the case of the latter liquid, here, the large change found from capillary rise between 9.9° and 108.5°, when compared with the smaller one between 108.5° and 210.8°, would seem to indicate error somewhere in the capillary rise method. With dimethylaniline the trend is the same in all results, although it can hardly be said that the agreement in the capillary rise results is satisfactory—all this, however, including the trend, may well be due to the decomposition of this very unstable liquid. For cymene it will be noted that the mean of all the values of t_c from capillary rise 395.5° is in fair agreement with the constant drop weight value of 394.7°. For m-xylene the drop weight values are constant, but lower than either set from capillary rise, but as these latter agree only in that they give a higher value, and differ from one another more than the lower one does from that from drop weight, it would seem to indicate a possibility of error in the determination of capillary rise.

In Table XLVI are given the t_c values calculated by aid of the Walden relationship, which does not require a knowledge of the molecular weight. In 8 cases here the agreement with the values calculated from $k_{\rm B}$ is all that could be expected, but in the other 8 the variation is larger than is warranted, it is thought, by the experimental results. This would make it appear as if there are certain cases where this relationship does not hold satisfactorily.

In the next paper of the series a report will be made upon the work on some of the lower esters.

Conclusions.

The results of this research may be summarized as follows:

I. According to the new definition of normal molecular weight, *i. e.*, that the normal (benzene) constant $k_{\rm B}$ give for the liquid a constant value of t_c independent of the temperature of observation, *t*, in the relationship $w(M/d)^{2/3} = k_{\rm B} (t_c - t - 6)$, the following liquids are to be regarded as perfectly non-associated as is benzene itself: bromobenzene, bromine, ethylidene chloride, toluene, phosphorus trichloride, *p*-, *o*-, and *m*-xylene, mesitylene, ethylbenzene, iodobenzene, fluorobenzene, cymene, ethylene chloride,

methylaniline, ethylaniline, isobutyl acetate, carbon disulfide, and diphenylmethane. In the case of dimethylaniline the discrepancy in the values of t_c is 0.8 per cent., which is much too great for an experimental error, and can show that the molecular weight is only slightly abnormal, which may well be due to the fact that this liquid is very readily decomposed.

II. Of the value of t_c calculated for the above liquids, those for bromobenzene, bromine, ethylidene chloride, toluene, phosphorus trichloride, o-, m-, and p-xylene agree excellently with the observed values of critical temperature, while the disagreement with this value is below 1 per cent. for mesitylene, and but slightly above that for ethylbenzene and iodobenzene.

III. The agreement between the calculated values of t_c from drop weight and those from capillary rise, with the II liquids which have been studied by that method, is exceedingly good for toluene and phosphorus trichloride. In the other cases the mean of the t_c value from capillary rise agrees well with that for drop weight; and it is only for mesitylene and *m*-xylene that the values in mean from capillary rise disagree with those from drop weight. In the case of the latter liquid, however, this seems to mean little, as the values by two observers, although higher throughout, do not agree even fairly with one another.

IV. The values of t_c calculated by aid of the Walden relationship, without the aid of the molecular weight, in 8 cases (out of the 16 to which it could be applied) agree very well with those calculated from $k_{\rm B}$, the variation in the others, however, indicating that probably this relationship is not as general as was at first thought.

LABORATORY OF PHYSICAL CHEMISTRY.

A MODIFICATION OF THE PERIODIC TABLE.

BY ELLIOT QUINCY ADAMS. Received March 30, 1911.

This article is to set forth and discuss the theoretical basis of an arrangement of the periodic table of the elements.

The principal defect of the earlier forms of the table, those formulated by Mendeléeff, Lothar Meyer and others, was that they placed in the same "family," as entirely homologous, elements as dissimilar as sodium and silver.

The double periods, of sixteen columns, of the more recent tables are a recognition of the fact that the number of elements in the different horizontal rows, or periods, is not constant. In this way the table has been made complete up to xenon (130.2), all known elements of lower atomic weight being accounted for, and only one space in the table, that below manganese, being vacant. Of the elements following xenon, the first two, cesium and barium, are obviously homologous with rubidium